LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa

Photo from wikipedia

Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying… Click to show full abstract

Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to drying changes the microbial respiration of soil aggregates by affecting microbial community composition and their co-occurrence patterns. Soils collected from a riparian zone of the Three Gorges Reservoir, China, were subjected to a wet-and-dry incubation experiment. Our data illustrated that the shift from flooding to drying substantially enhanced soil respiration for all sizes of aggregate fractions. Moreover, soil respiration declined with aggregate size in both flooding and drying treatments. The keystone taxa in bacterial networks were found to be Acidobacteriales, Gemmatimonadales, Anaerolineales, and Cytophagales during the flooding treatment, and Rhizobiales, Gemmatimonadales, Sphingomonadales, and Solirubrobacterales during the drying treatment. For fungal networks, Hypocreales and Agaricalesin were the keystone taxa in the flooding and drying treatments, respectively. Furthermore, the shift from flooding to drying enhanced the microbial respiration of soil aggregates by changing keystone taxa. Notably, fungal community composition and network properties dominated the changes in the microbial respiration of soil aggregates during the shift from flooding to drying. Thus, our study highlighted that the shift from flooding to drying changes keystone taxa, hence increasing aggregate-scale soil respiration.

Keywords: flooding drying; respiration; keystone taxa; shift flooding; soil

Journal Title: Frontiers in Microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.