LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Developments in Linear Interaction Energy Based Binding Free Energy Calculations

Photo by bermixstudio from unsplash

The linear interaction energy (LIE) approach is an end–point method to compute binding affinities. As such it combines explicit conformational sampling (of the protein-bound and unbound-ligand states) with efficiency in… Click to show full abstract

The linear interaction energy (LIE) approach is an end–point method to compute binding affinities. As such it combines explicit conformational sampling (of the protein-bound and unbound-ligand states) with efficiency in calculating values for the protein-ligand binding free energy ΔGbind. This perspective summarizes our recent efforts to use molecular simulation and empirically calibrated LIE models for accurate and efficient calculation of ΔGbind for diverse sets of compounds binding to flexible proteins (e.g., Cytochrome P450s and other proteins of direct pharmaceutical or biochemical interest). Such proteins pose challenges on ΔGbind computation, which we tackle using a previously introduced statistically weighted LIE scheme. Because calibrated LIE models require empirical fitting of scaling parameters, they need to be accompanied with an applicability domain (AD) definition to provide a measure of confidence for predictions for arbitrary query compounds within a reference frame defined by a collective chemical and interaction space. To enable AD assessment of LIE predictions (or other protein-structure and -dynamic based ΔGbind calculations) we recently introduced strategies for AD assignment of LIE models, based on simulation and training data only. These strategies are reviewed here as well, together with available tools to facilitate and/or automate LIE computation (including software for combined statistically-weighted LIE calculations and AD assessment).

Keywords: lie; energy; binding free; interaction energy; interaction; linear interaction

Journal Title: Frontiers in Molecular Biosciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.