The accurate prediction of potential associations between microRNAs (miRNAs) and small molecule (SM) drugs can enhance our knowledge of how SM cures endogenous miRNA-related diseases. Given that traditional methods for… Click to show full abstract
The accurate prediction of potential associations between microRNAs (miRNAs) and small molecule (SM) drugs can enhance our knowledge of how SM cures endogenous miRNA-related diseases. Given that traditional methods for predicting SM-miRNA associations are time-consuming and arduous, a number of computational models have been proposed to anticipate the potential SM–miRNA associations. However, several of these strategies failed to eliminate noise from the known SM-miRNA association information or failed to prioritize the most significant known SM-miRNA associations. Therefore, we proposed a model of Graph Convolutional Network with Layer Attention mechanism for SM-MiRNA Association prediction (GCNLASMMA). Firstly, we obtained the new SM-miRNA associations by matrix decomposition. The new SM-miRNA associations, as well as the integrated SM similarity and miRNA similarity were subsequently incorporated into a heterogeneous network. Finally, a graph convolutional network with an attention mechanism was used to compute the reconstructed SM-miRNA association matrix. Furthermore, four types of cross validations and two types of case studies were performed to assess the performance of GCNLASMMA. In cross validation, global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation achieved excellent performance. Numerous hypothesized associations in case studies were confirmed by experimental literatures. All of these results confirmed that GCNLASMMA is a trustworthy association inference method.
               
Click one of the above tabs to view related content.