A theory of magnitude (ATOM) suggests that a generalized magnitude system in the brain processes magnitudes such as space, time, and numbers. Numerous behavioral and neurocognitive studies have provided support… Click to show full abstract
A theory of magnitude (ATOM) suggests that a generalized magnitude system in the brain processes magnitudes such as space, time, and numbers. Numerous behavioral and neurocognitive studies have provided support to ATOM theory. However, the evidence for common magnitude processing primarily comes from the studies in which numerical and temporal information are presented visually. Our current understanding of such cross-dimensional magnitude interactions is limited to visual modality only. However, it is still unclear whether the ATOM-framework accounts for the integration of cross-modal magnitude information. To examine the cross-modal influence of numerical magnitude on temporal processing of the tone, we conducted three experiments using a temporal bisection task. We presented the numerical magnitude information in the visual domain and the temporal information in the auditory either simultaneously with duration judgment task (Experiment-1), before duration judgment task (Experiment-2), and before duration judgment task but with numerical magnitude also being task-relevant (Experiment-3). The results suggest that the numerical information presented in the visual domain affects temporal processing of the tone only when the numerical magnitudes were task-relevant and available while making a temporal judgment (Experiments-1 and 3). However, numerical information did not interfere with temporal information when presented temporally separated from the duration information (Experiments-2). The findings indicate that the influence of visual numbers on temporal processing in cross-modal settings may not arise from the common magnitude system but instead from general cognitive mechanisms like attention and memory.
               
Click one of the above tabs to view related content.