LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gaze-Based Intention Estimation for Shared Autonomy in Pick-and-Place Tasks

Photo from wikipedia

Shared autonomy aims at combining robotic and human control in the execution of remote, teleoperated tasks. This cooperative interaction cannot be brought about without the robot first recognizing the current… Click to show full abstract

Shared autonomy aims at combining robotic and human control in the execution of remote, teleoperated tasks. This cooperative interaction cannot be brought about without the robot first recognizing the current human intention in a fast and reliable way so that a suitable assisting plan can be quickly instantiated and executed. Eye movements have long been known to be highly predictive of the cognitive agenda unfolding during manual tasks and constitute, hence, the earliest and most reliable behavioral cues for intention estimation. In this study, we present an experiment aimed at analyzing human behavior in simple teleoperated pick-and-place tasks in a simulated scenario and at devising a suitable model for early estimation of the current proximal intention. We show that scan paths are, as expected, heavily shaped by the current intention and that two types of Gaussian Hidden Markov Models, one more scene-specific and one more action-specific, achieve a very good prediction performance, while also generalizing to new users and spatial arrangements. We finally discuss how behavioral and model results suggest that eye movements reflect to some extent the invariance and generality of higher-level planning across object configurations, which can be leveraged by cooperative robotic systems.

Keywords: estimation; place tasks; shared autonomy; intention estimation; pick place; intention

Journal Title: Frontiers in Neurorobotics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.