LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation

Photo from wikipedia

This study examines the feasibility of using a robot-assisted therapy methodology based on the Bobath concept to perform exercises applied in conventional therapy for gait rehabilitation in stroke patients. The… Click to show full abstract

This study examines the feasibility of using a robot-assisted therapy methodology based on the Bobath concept to perform exercises applied in conventional therapy for gait rehabilitation in stroke patients. The aim of the therapy is to improve postural control and movement through exercises based on repetitive active-assisted joint mobilization, which is expected to produce strength changes in the lower limbs. As therapy progresses, robotic assistance is gradually reduced and the patient's burden increases with the goal of achieving a certain degree of independence. The relationship between force and range of motion led to the analysis of both parameters of interest. The study included 23 volunteers who performed 24 sessions, 2 sessions per week for 12 weeks, each lasting about 1 h. The results showed a significant increase in hip abduction and knee flexion strength on both sides, although there was a general trend of increased strength in all joints. However, the range of motion at the hip and ankle joints was reduced. The usefulness of this platform for transferring exercises from conventional to robot-assisted therapies was demonstrated, as well as the benefits that can be obtained in muscle strength training. However, it is suggested to complement the applied therapy with exercises for the maintenance and improvement of the range of motion.

Keywords: strength; muscle strength; assisted therapy; robot assisted; gait rehabilitation

Journal Title: Frontiers in Neurorobotics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.