LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning with few samples in deep learning for image classification, a mini-review

Deep learning has achieved enormous success in various computer tasks. The excellent performance depends heavily on adequate training datasets, however, it is difficult to obtain abundant samples in practical applications.… Click to show full abstract

Deep learning has achieved enormous success in various computer tasks. The excellent performance depends heavily on adequate training datasets, however, it is difficult to obtain abundant samples in practical applications. Few-shot learning is proposed to address the data limitation problem in the training process, which can perform rapid learning with few samples by utilizing prior knowledge. In this paper, we focus on few-shot classification to conduct a survey about the recent methods. First, we elaborate on the definition of the few-shot classification problem. Then we propose a newly organized taxonomy, discuss the application scenarios in which each method is effective, and compare the pros and cons of different methods. We classify few-shot image classification methods from four perspectives: (i) Data augmentation, which contains sample-level and task-level data augmentation. (ii) Metric-based method, which analyzes both feature embedding and metric function. (iii) Optimization method, which is compared from the aspects of self-learning and mutual learning. (iv) Model-based method, which is discussed from the perspectives of memory-based, rapid adaptation and multi-task learning. Finally, we conduct the conclusion and prospect of this paper.

Keywords: samples deep; classification; learning samples; deep learning; image classification

Journal Title: Frontiers in Computational Neuroscience
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.