Identification of congenital sensorineural hearing loss (SNHL) and early intervention, especially by cochlear implantation (CI), are crucial for restoring hearing in patients. However, high accuracy diagnostics of SNHL and prognostic… Click to show full abstract
Identification of congenital sensorineural hearing loss (SNHL) and early intervention, especially by cochlear implantation (CI), are crucial for restoring hearing in patients. However, high accuracy diagnostics of SNHL and prognostic prediction of CI are lacking to date. To diagnose SNHL and predict the outcome of CI, we propose a method combining functional connections (FCs) measured by functional magnetic resonance imaging (fMRI) and machine learning. A total of 68 children with SNHL and 34 healthy controls (HC) of matched age and gender were recruited to construct classification models for SNHL and HC. A total of 52 children with SNHL that underwent CI were selected to establish a predictive model of the outcome measured by the category of auditory performance (CAP), and their resting-state fMRI images were acquired. After the dimensional reduction of FCs by kernel principal component analysis, three machine learning methods including the support vector machine, logistic regression, and k-nearest neighbor and their voting were used as the classifiers. A multiple logistic regression method was performed to predict the CAP of CI. The classification model of voting achieves an area under the curve of 0.84, which is higher than that of three single classifiers. The multiple logistic regression model predicts CAP after CI in SNHL with an average accuracy of 82.7%. These models may improve the identification of SNHL through fMRI images and prognosis prediction of CI in SNHL.
               
Click one of the above tabs to view related content.