LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing Poor and Favorable Outcome Prediction With Machine Learning After Mechanical Thrombectomy in Acute Ischemic Stroke

Photo from wikipedia

Background and Purpose Outcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified… Click to show full abstract

Background and Purpose Outcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified Rankin Scale, mRS 0–2) after 3 months but poor outcome representing severe disability and mortality (mRS 5 and 6) might be of equal importance for clinical decision-making. Methods We retrospectively analyzed patients with AIS and LVO undergoing MT from 2009 to 2018. Prognostic variables were grouped in baseline clinical (A), MRI-derived variables including mismatch [apparent diffusion coefficient (ADC) and time-to-maximum (Tmax) lesion volume] (B), and variables reflecting speed and extent of reperfusion (C) [modified treatment in cerebral ischemia (mTICI) score and time from onset to mTICI]. Three different scenarios were analyzed: (1) baseline clinical parameters only, (2) baseline clinical and MRI-derived parameters, and (3) all baseline clinical, imaging-derived, and reperfusion-associated parameters. For each scenario, we assessed prediction for favorable and poor outcome with seven different machine learning algorithms. Results In 210 patients, prediction of favorable outcome was improved after including speed and extent of recanalization [highest area under the curve (AUC) 0.73] compared to using baseline clinical variables only (highest AUC 0.67). Prediction of poor outcome remained stable by using baseline clinical variables only (highest AUC 0.71) and did not improve further by additional variables. Prediction of favorable and poor outcomes was not improved by adding MR-mismatch variables. Most important baseline clinical variables for both outcomes were age, National Institutes of Health Stroke Scale, and premorbid mRS. Conclusions Our results suggest that a prediction of poor outcome after AIS and MT could be made based on clinical baseline variables only. Speed and extent of MT did improve prediction for a favorable outcome but is not relevant for poor outcome. An MR mismatch with small ischemic core and larger penumbral tissue showed no predictive importance.

Keywords: poor outcome; favorable outcome; outcome; outcome prediction; prediction; baseline clinical

Journal Title: Frontiers in Neurology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.