LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Random Subspace Ensemble Learning for Functional Near-Infrared Spectroscopy Brain-Computer Interfaces

Photo from wikipedia

The feasibility of the random subspace ensemble learning method was explored to improve the performance of functional near-infrared spectroscopy-based brain-computer interfaces (fNIRS-BCIs). Feature vectors have been constructed using the temporal… Click to show full abstract

The feasibility of the random subspace ensemble learning method was explored to improve the performance of functional near-infrared spectroscopy-based brain-computer interfaces (fNIRS-BCIs). Feature vectors have been constructed using the temporal characteristics of concentration changes in fNIRS chromophores such as mean, slope, and variance to implement fNIRS-BCIs systems. The mean and slope, which are the most popular features in fNIRS-BCIs, were adopted. Linear support vector machine and linear discriminant analysis were employed, respectively, as a single strong learner and multiple weak learners. All features in every channel and available time window were employed to train the strong learner, and the feature subsets were selected at random to train multiple weak learners. It was determined that random subspace ensemble learning is beneficial to enhance the performance of fNIRS-BCIs.

Keywords: random subspace; subspace ensemble; functional near; spectroscopy; ensemble learning

Journal Title: Frontiers in Human Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.