Objective To explore the feasibility of a deep learning three-dimensional (3D) V-Net convolutional neural network to construct high-resolution computed tomography (HRCT)-based auditory ossicle structure recognition and segmentation models. Methods The… Click to show full abstract
Objective To explore the feasibility of a deep learning three-dimensional (3D) V-Net convolutional neural network to construct high-resolution computed tomography (HRCT)-based auditory ossicle structure recognition and segmentation models. Methods The temporal bone HRCT images of 158 patients were collected retrospectively, and the malleus, incus, and stapes were manually segmented. The 3D V-Net and U-Net convolutional neural networks were selected as the deep learning methods for segmenting the auditory ossicles. The temporal bone images were randomized into a training set (126 cases), a test set (16 cases), and a validation set (16 cases). Taking the results of manual segmentation as a control, the segmentation results of each model were compared. Results The Dice similarity coefficients (DSCs) of the malleus, incus, and stapes, which were automatically segmented with a 3D V-Net convolutional neural network and manually segmented from the HRCT images, were 0.920 ± 0.014, 0.925 ± 0.014, and 0.835 ± 0.035, respectively. The average surface distance (ASD) was 0.257 ± 0.054, 0.236 ± 0.047, and 0.258 ± 0.077, respectively. The Hausdorff distance (HD) 95 was 1.016 ± 0.080, 1.000 ± 0.000, and 1.027 ± 0.102, respectively. The DSCs of the malleus, incus, and stapes, which were automatically segmented using the 3D U-Net convolutional neural network and manually segmented from the HRCT images, were 0.876 ± 0.025, 0.889 ± 0.023, and 0.758 ± 0.044, respectively. The ASD was 0.439 ± 0.208, 0.361 ± 0.077, and 0.433 ± 0.108, respectively. The HD 95 was 1.361 ± 0.872, 1.174 ± 0.350, and 1.455 ± 0.618, respectively. As these results demonstrated, there was a statistically significant difference between the two groups (P < 0.001). Conclusion The 3D V-Net convolutional neural network yielded automatic recognition and segmentation of the auditory ossicles and produced similar accuracy to manual segmentation results.
               
Click one of the above tabs to view related content.