Historians like to order long-gone events in time. When events correlate with years—numbers—events seem to follow a clear time line, but when their order is unclear, historians order events using… Click to show full abstract
Historians like to order long-gone events in time. When events correlate with years—numbers—events seem to follow a clear time line, but when their order is unclear, historians order events using extra information from folklore, writings, artifacts, and cultural habits. Here we ask the following question: How does the brain, at a neuromechanistic level, order events on a mental time line? This question is relevant to many neuroscience paradigms such as rate calculation, planning, and decision making, processes that crucially depend on the order of events. For example, episodic memory incorporates order and duration of the events in the episode (Tulving and Donaldson, 1972; Eichenbaum, 2017). Events and their features (order, duration, content etc.) are stored in memory and recalled when needed. But how is the order of events assessed when events are recalled from memory to be placed on the timeline? To address this question, we discuss several classes of models of timing and time perception, and their capability of ordering events in time. Because the mental time includes all durations, our discussion will freely mix time scales: milliseconds, seconds, hours, days. Moreover, here we do not discuss in depth the scalar property—the increase in timing errors with the criterion time—because almost all models of timing can reproduce the scalar property, making it a weak criterion for selecting among these models.
               
Click one of the above tabs to view related content.