LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multidimensional Timbre Spaces of Cochlear Implant Vocoded and Non-vocoded Synthetic Female Singing Voices

Photo by traf from unsplash

Many post-lingually deafened cochlear implant (CI) users report that they no longer enjoy listening to music, which could possibly contribute to a perceived reduction in quality of life. One aspect… Click to show full abstract

Many post-lingually deafened cochlear implant (CI) users report that they no longer enjoy listening to music, which could possibly contribute to a perceived reduction in quality of life. One aspect of music perception, vocal timbre perception, may be difficult for CI users because they may not be able to use the same timbral cues available to normal hearing listeners. Vocal tract resonance frequencies have been shown to provide perceptual cues to voice categories such as baritone, tenor, mezzo-soprano, and soprano, while changes in glottal source spectral slope are believed to be related to perception of vocal quality dimensions such as fluty vs. brassy. As a first step toward understanding vocal timbre perception in CI users, we employed an 8-channel noise-band vocoder to test how vocoding can alter the timbral perception of female synthetic sung vowels across pitches. Non-vocoded and vocoded stimuli were synthesized with vibrato using 3 excitation source spectral slopes and 3 vocal tract transfer functions (mezzo-soprano, intermediate, soprano) at the pitches C4, B4, and F5. Six multi-dimensional scaling experiments were conducted: C4 not vocoded, C4 vocoded, B4 not vocoded, B4 vocoded, F5 not vocoded, and F5 vocoded. At the pitch C4, for both non-vocoded and vocoded conditions, dimension 1 grouped stimuli according to voice category and was most strongly predicted by spectral centroid from 0 to 2 kHz. While dimension 2 grouped stimuli according to excitation source spectral slope, it was organized slightly differently and predicted by different acoustic parameters in the non-vocoded and vocoded conditions. For pitches B4 and F5 spectral centroid from 0 to 2 kHz most strongly predicted dimension 1. However, while dimension 1 separated all 3 voice categories in the vocoded condition, dimension 1 only separated the soprano stimuli from the intermediate and mezzo-soprano stimuli in the non-vocoded condition. While it is unclear how these results predict timbre perception in CI listeners, in general, these results suggest that perhaps some aspects of vocal timbre may remain.

Keywords: dimension; timbre; non vocoded; cochlear implant; perception; vocoded vocoded

Journal Title: Frontiers in Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.