LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MVPANI: A Toolkit With Friendly Graphical User Interface for Multivariate Pattern Analysis of Neuroimaging Data

Photo from wikipedia

With the rapid development of machine learning techniques, multivariate pattern analysis (MVPA) is becoming increasingly popular in the field of neuroimaging data analysis. Several software packages have been developed to… Click to show full abstract

With the rapid development of machine learning techniques, multivariate pattern analysis (MVPA) is becoming increasingly popular in the field of neuroimaging data analysis. Several software packages have been developed to facilitate its application in neuroimaging studies. As most of these software packages are based on command lines, researchers are required to learn how to program, which has greatly limited the use of MVPA for researchers without programming skills. Moreover, lacking a graphical user interface (GUI) also hinders the standardization of the application of MVPA in neuroimaging studies and, consequently, the replication of previous studies or comparisons of results between different studies. Therefore, we developed a GUI-based toolkit for MVPA of neuroimaging data: MVPANI (MVPA for Neuroimaging). Compared with other existing software packages, MVPANI has several advantages. First, MVPANI has a GUI and is, thus, more friendly for non-programmers. Second, MVPANI offers a variety of machine learning algorithms with the flexibility of parameter modification so that researchers can test different algorithms and tune parameters to identify the most suitable algorithms and parameters for their own data. Third, MVPANI also offers the function of data fusion at two levels (feature level or decision level) to utilize complementary information contained in different measures obtained from multimodal neuroimaging techniques. In this paper, we introduce this toolkit and provide four examples to demonstrate its usage, including (1) classification between patients and controls, (2) identification of brain areas containing discriminating information, (3) prediction of clinical scores, and (4) multimodal data fusion.

Keywords: graphical user; user interface; analysis; pattern analysis; multivariate pattern; neuroimaging data

Journal Title: Frontiers in Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.