LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An objective bone conduction verification tool using a piezoelectric thin-film force transducer

Photo from wikipedia

All hearing aid fittings should be validated with appropriate outcome measurements, whereas there is a lack of well-designed objective verification methods for bone conduction (BC) hearing aids, compared to the… Click to show full abstract

All hearing aid fittings should be validated with appropriate outcome measurements, whereas there is a lack of well-designed objective verification methods for bone conduction (BC) hearing aids, compared to the real-ear measurement for air conduction hearing aids. This study aims to develop a new objective verification method for BC hearing aids by placing a piezoelectric thin-film force transducer between the BC transducer and the stimulation position. The newly proposed method was compared with the ear canal method and the artificial mastoid method through audibility estimation. The audibility estimation adopted the responses from the transducers that correspond to the individual BC hearing thresholds and three different input levels of pink noise. Twenty hearing-impaired (HI) subjects without prior experience with hearing aids were recruited for this study. The measurement and analysis results showed that the force transducer and ear canal methods almost yielded consistent results, while the artificial mastoid method exhibited significant differences from these two methods. The proposed force transducer method showed a lower noise level and was less affected by the sound field signal when compared with other methods. This indicates that it is promising to utilize a piezoelectric thin-film force transducer as an in-situ objective measurement method of BC stimulation.

Keywords: transducer; piezoelectric thin; force transducer; method; thin film

Journal Title: Frontiers in Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.