LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks

Photo from wikipedia

Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability. Previous works have shown that converting Artificial Neural Networks (ANNs) into… Click to show full abstract

Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability. Previous works have shown that converting Artificial Neural Networks (ANNs) into SNNs is a practical and efficient approach for implementing an SNN. However, the basic principle and theoretical groundwork are lacking for training a non-accuracy-loss SNN. This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs). Such mapping relationship is analytically proven under certain conditions and demonstrated by simulation and real data experiments. It can serve as the theoretical basis for the potential combination of the respective merits of the two categories of neural networks.

Keywords: linear leaky; neural networks; integrate fire; spiking neural; deep neural; leaky integrate

Journal Title: Frontiers in Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.