LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Parkinson's disease resting tremor severity classification using machine learning with resampling techniques

Photo from wikipedia

In resting tremor, the body part is in complete repose and often dampens or subsides entirely with action. The most frequent cause of resting tremors is known as idiopathic Parkinson's… Click to show full abstract

In resting tremor, the body part is in complete repose and often dampens or subsides entirely with action. The most frequent cause of resting tremors is known as idiopathic Parkinson's disease (PD). For examination, neurologists of patients with PD include tests such as finger-to-nose tests, walking back and forth in the corridor, and the pull test. This evaluation is focused on Unified Parkinson's disease rating scale (UPDRS), which is subjective as well as based on some daily life motor activities for a limited time frame. In this study, severity analysis is performed on an imbalanced dataset of patients with PD. This is the reason why the classification of various data containing imbalanced class distribution has endured a notable drawback of the performance achievable by various standard classification learning algorithms. In this work, we used resampling techniques including under-sampling, over-sampling, and a hybrid combination. Resampling techniques are incorporated with renowned classifiers, such as XGBoost, decision tree, and K-nearest neighbors. From the results, it is concluded that the Over-sampling method performed much better than under-sampling and hybrid sampling techniques. Among the over-sampling techniques, random sampling has obtained 99% accuracy using XGBoost classifier and 98% accuracy using the decision tree. Besides, it is observed that different resampling methods performed differently with various classifiers.

Keywords: classification; resampling techniques; parkinson disease; resting tremor

Journal Title: Frontiers in Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.