LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuromorphic artificial intelligence systems

Photo by vitalysacred from unsplash

Modern artificial intelligence (AI) systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the mammalian brain. In this article we… Click to show full abstract

Modern artificial intelligence (AI) systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the mammalian brain. In this article we discuss these limitations and ways to mitigate them. Next, we present an overview of currently available neuromorphic AI projects in which these limitations are overcome by bringing some brain features into the functioning and organization of computing systems (TrueNorth, Loihi, Tianjic, SpiNNaker, BrainScaleS, NeuronFlow, DYNAP, Akida, Mythic). Also, we present the principle of classifying neuromorphic AI systems by the brain features they use: connectionism, parallelism, asynchrony, impulse nature of information transfer, on-device-learning, local learning, sparsity, analog, and in-memory computing. In addition to reviewing new architectural approaches used by neuromorphic devices based on existing silicon microelectronics technologies, we also discuss the prospects for using a new memristor element base. Examples of recent advances in the use of memristors in neuromorphic applications are also given.

Keywords: artificial intelligence; intelligence systems; brain; neuromorphic artificial

Journal Title: Frontiers in Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.