LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase-amplitude coupling-based adaptive filters for neural signal decoding

Photo from wikipedia

Bandpass filters play a core role in ECoG signal processing. Commonly used frequency bands such as alpha, beta, and gamma bands can reflect the normal rhythm of the brain. However,… Click to show full abstract

Bandpass filters play a core role in ECoG signal processing. Commonly used frequency bands such as alpha, beta, and gamma bands can reflect the normal rhythm of the brain. However, the universally predefined bands might not be optimal for a specific task. Especially the gamma band usually covers a wide frequency span (i.e., 30–200 Hz) which can be too coarse to capture features that appear in narrow bands. An ideal option is to find the optimal frequency bands for specific tasks in real-time and dynamically. To tackle this problem, we propose an adaptive band filter that selects the useful frequency band in a data-driven way. Specifically, we leverage the phase-amplitude coupling (PAC) of the coupled working mechanism of synchronizing neuron and pyramidal neurons in neuronal oscillations, in which the phase of slower oscillations modulates the amplitude of faster ones, to help locate the fine frequency bands from the gamma range, in a task-specific and individual-specific way. Thus, the information can be more precisely extracted from ECoG signals to improve neural decoding performance. Based on this, an end-to-end decoder (PACNet) is proposed to construct a neural decoding application with adaptive filter banks in a uniform framework. Experiments show that PACNet can improve neural decoding performance universally with different tasks.

Keywords: phase amplitude; frequency; frequency bands; neural decoding; amplitude coupling

Journal Title: Frontiers in Neuroscience
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.