LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated ROI-Based Labeling for Multi-Voxel Magnetic Resonance Spectroscopy Data Using FreeSurfer

Photo from wikipedia

Purpose: Advanced analysis methods for multi-voxel magnetic resonance spectroscopy (MRS) are crucial for neurotransmitter quantification, especially for neurotransmitters showing different distributions across tissue types. So far, only a handful of… Click to show full abstract

Purpose: Advanced analysis methods for multi-voxel magnetic resonance spectroscopy (MRS) are crucial for neurotransmitter quantification, especially for neurotransmitters showing different distributions across tissue types. So far, only a handful of studies have used region of interest (ROI)-based labeling approaches for multi-voxel MRS data. Hence, this study aims to provide an automated ROI-based labeling tool for 3D-multi-voxel MRS data. Methods: MRS data, for automated ROI-based labeling, was acquired in two different spatial resolutions using a spiral-encoded, LASER-localized 3D-MRS imaging sequence with and without MEGA-editing. To calculate the mean metabolite distribution within selected ROIs, masks of individual brain regions were extracted from structural T1-weighted images using FreeSurfer. For reliability testing of automated labeling a comparison to manual labeling and single voxel selection approaches was performed for six different subcortical regions. Results: Automated ROI-based labeling showed high consistency [intra-class correlation coefficient (ICC) > 0.8] for all regions compared to manual labeling. Higher variation was shown when selected voxels, chosen from a multi-voxel grid, uncorrected for voxel composition, were compared to labeling methods using spatial averaging based on anatomical features within gray matter (GM) volumes. Conclusion: We provide an automated ROI-based analysis approach for various types of 3D-multi-voxel MRS data, which dramatically reduces hands-on time compared to manual labeling without any possible inter-rater bias.

Keywords: roi based; multi voxel; automated roi; based labeling; spectroscopy

Journal Title: Frontiers in Molecular Neuroscience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.