LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

17α-Hydroxyprogesterone Caproate Inhibits Cytokine Production via Suppression of NF-κB Activation

Photo from wikipedia

Cytokine release syndrome (CRS) is one of the leading causes of morbidity and mortality in COVID-19 patients with elevated levels of circulating cytokines contributing to various clinical symptoms. Favorable control… Click to show full abstract

Cytokine release syndrome (CRS) is one of the leading causes of morbidity and mortality in COVID-19 patients with elevated levels of circulating cytokines contributing to various clinical symptoms. Favorable control of CRS represents a promising and effective strategy to mitigate the clinical outcomes of hospitalized patients with moderate to severe pneumonia. Using in vivo cytokine release assay in human peripheral blood mononuclear cell (PBMC)-engrafted immunodeficient mice, we reported that 17α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestogen, exhibited significant inhibition of OKT-3-stimulated production of numerous cytokines including TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, and GM-CSF. Furthermore, 17-OHPC inhibited in vitro production of IFN-γ, IL-1β, IL-2, IL-6, and IL-10 in human PBMCs stimulated with OKT3, while exhibiting down-regulation of the mRNA levels of TNF-α, IFN-γ, IL-2, IL-6, and IL-10. Using the same human PBMCs, additional stimulators anti-CD28 antibody or PHA treatments led to substantial cytokine production, which was also attenuated by 17-OHPC. OKT3-stimulated phosphorylation of IκBα and nuclear translocation of NF-κB p65 in human PBMCs were also reversed by 17-OHPC, suggesting its inhibition on NF-κB signaling in immune cells. Taken together, this work reported both in vivo and in vitro inhibition of cytokine production by 17-OHPC, presumably by virtue of its suppression of NF-κB signaling. These findings provide pharmacological evidence to support the potential application of 17-OHPC in treating CRS associated with COVID-19.

Keywords: production; suppression; cytokine production; hydroxyprogesterone caproate

Journal Title: Frontiers in Pharmacology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.