LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Exercise-Related Skeletal Muscle Oxygen Consumption Following Uptake of Endurance Training Measured Using Near-Infrared Spectroscopy

Photo by victorfreitas from unsplash

Skeletal muscle metabolic function is known to respond positively to exercise interventions. Developing non-invasive techniques that quantify metabolic adaptations and identifying interventions that impart successful response are ongoing challenges for… Click to show full abstract

Skeletal muscle metabolic function is known to respond positively to exercise interventions. Developing non-invasive techniques that quantify metabolic adaptations and identifying interventions that impart successful response are ongoing challenges for research. Healthy non-athletic adults (18–35 years old) were enrolled in a study investigating physiological adaptations to a minimum of 16 weeks endurance training prior to undertaking their first marathon. Before beginning training, participants underwent measurements of skeletal muscle oxygen consumption using near-infrared spectroscopy (NIRS) at rest (resting muscleV˙O2) and immediately following a maximal exercise test (post-exercise muscleV˙O2). Exercise-related increase in muscleV˙O2 (ΔmV˙O2) was derived from these measurements and cardio-pulmonary peakV˙O2 measured by analysis of expired gases. All measurements were repeated within 3 weeks of participants completing following the marathon and marathon completion time recorded. MuscleV˙O2 was positively correlated with cardio-pulmonary peakV˙O2 (r = 0.63, p < 0.001). MuscleV˙O2 increased at follow-up (48% increase; p = 0.004) despite no change in cardio-pulmonary peakV˙O2 (0% change; p = 0.97). Faster marathon completion time correlated with higher cardio-pulmonary peakV˙O2 (rpartial = −0.58, p = 0.002) but not muscleV˙O2 (rpartial = 0.16, p = 0.44) after adjustment for age and sex [and adipose tissue thickness (ATT) for muscleV˙O2 measurements]. Skeletal muscle metabolic adaptions occur following training and completion of a first-time marathon; these can be identified non-invasively using NIRS. Although the cardio-pulmonary system is limiting for running performance, skeletal muscle changes can be detected despite minimal improvement in cardio-pulmonary function.

Keywords: training; skeletal muscle; cardio pulmonary; spectroscopy

Journal Title: Frontiers in Physiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.