LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuropathic Pain: Delving into the Oxidative Origin and the Possible Implication of Transient Receptor Potential Channels

Photo from wikipedia

Currently, neuropathic pain is an underestimated socioeconomic health problem affecting millions of people worldwide, which incidence may increase in the next years due to chronification of several diseases, such as… Click to show full abstract

Currently, neuropathic pain is an underestimated socioeconomic health problem affecting millions of people worldwide, which incidence may increase in the next years due to chronification of several diseases, such as cancer and diabetes. Growing evidence links neuropathic pain present in several disorders [i.e., spinal cord injury (SCI), cancer, diabetes and alcoholism] to central sensitization, as a global result of mitochondrial dysfunction induced by oxidative and nitrosative stress. Additionally, inflammatory signals and the overload in intracellular calcium ion could be also implicated in this complex network that has not yet been elucidated. Recently, calcium channels namely transient receptor potential (TRP) superfamily, including members of the subfamilies A (TRAP1), M (TRPM2 and 7), and V (TRPV1 and 4), have demonstrated to play a role in the nociception mediated by sensory neurons. Therefore, as neuropathic pain could be a consequence of the imbalance between reactive oxygen species and endogen antioxidants, antioxidant supplementation may be a treatment option. This kind of therapy would exert its beneficial action through antioxidant and immunoregulatory functions, optimizing mitochondrial function and even increasing the biogenesis of this vital organelle; on balance, antioxidant supplementation would improve the patient's quality of life. This review seeks to deepen on current knowledge about neuropathic pain, summarizing clinical conditions and probable causes, the relationship existing between oxidative stress, mitochondrial dysfunction and TRP channels activation, and scientific evidence related to antioxidant supplementation.

Keywords: antioxidant supplementation; receptor potential; transient receptor; neuropathic pain; pain

Journal Title: Frontiers in Physiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.