LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fine-Root Turnover, Litterfall, and Soil Microbial Community of Three Mixed Coniferous–Deciduous Forests Dominated by Korean Pine (Pinus koraiensis) Along a Latitudinal Gradient

Photo from wikipedia

Carbon dynamics in forests and in particular in soils are of primary importance in the context of climate change. A better understanding of the drivers controlling carbon storage is needed… Click to show full abstract

Carbon dynamics in forests and in particular in soils are of primary importance in the context of climate change. A better understanding of the drivers controlling carbon storage is needed to improve climate mitigation strategies. Carbon storage is the result of a balance between inputs and outputs. Carbon inputs in the soil come from plant residues and root exudates, which are further transformed by microorganisms and stored in the long term. Here, we measured litter and fine-root production in three mixed forests dominated by Pinus koraiensis along a latitudinal gradient and performed a litterbag experiment to better understand the driving factors of decomposition. We found that over the three sites litter production was controlled by climatic factors, soil properties, and forest stand characteristics, whereas decay rates were mainly controlled by microbial community structure and soil stoichiometry. For fine roots, production differed among sites, and higher production was consistently observed in the top soil layers compared to deep soil, although the root distribution along the soil profile differed among sites. Fine-root decay rates were mainly controlled by fine-root stoichiometric characteristics. This article emphasizes the complexity of fine-root dynamics even for a single species. Environmental drivers impact on both production and decay, and we suggest performing manipulative field experiments to better identify the mechanisms involved in soil carbon cycling.

Keywords: three mixed; production; fine root; forests dominated; soil

Journal Title: Frontiers in Plant Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.