LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leaf Phosphorus Concentration Regulates the Development of Cluster Roots and Exudation of Carboxylates in Macadamia integrifolia

Photo from wikipedia

Phosphorus (P) deficiency induces cluster-root formation and carboxylate exudation in most Proteaceae. However, how external P supply regulates these root traits in Macadamia integrifolia remains unclear. Macadamia plants were grown… Click to show full abstract

Phosphorus (P) deficiency induces cluster-root formation and carboxylate exudation in most Proteaceae. However, how external P supply regulates these root traits in Macadamia integrifolia remains unclear. Macadamia plants were grown hydroponically with seven P levels to characterize biomass allocation, cluster-root development, and exudation of carboxylates and acid phosphatases. Plant biomass increased with increasing P supply, peaking at 5 μM P, was the same at 5–25 μM P, and declined at 50–100 μM P. Leaf P concentration increased with increasing P supply, but shoot biomass was positively correlated with leaf P concentration up to 0.7–0.8 mg P g–1 dry weight (DW), and declined with further increasing leaf P concentration. The number of cluster roots declined with increasing P supply, with a critical value of leaf P concentration at 0.7–0.8 mg P g–1 DW. We found a similar trend for carboxylate release, with a critical value of leaf P concentration at 0.5 mg g–1 DW, but the activity of acid phosphatases showed a gradually-decreasing trend with increasing P supply. Our results suggest that leaf P concentration regulates the development and functioning of cluster roots, with a critical P concentration of 0.5–0.8 mg g–1, above which macadamia growth is inhibited.

Keywords: exudation; leaf concentration; cluster roots; concentration; development

Journal Title: Frontiers in Plant Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.