LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimation of intrinsic water-use efficiency from δ13C signature of C3 leaves: Assumptions and uncertainty

Photo from wikipedia

Carbon isotope composition (δ13C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response… Click to show full abstract

Carbon isotope composition (δ13C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response of plants to climate change. This approach relies on established relationships between leaf gas exchange and isotopic discrimination, which are reflected in different formulations of 13C-based iWUE models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, recent studies demonstrated that using this linear model for quantitative studies of iWUE could be problematic. Despite these advances, there is a scarcity of review papers that have comprehensively reviewed the theoretical basis, assumptions, and uncertainty of 13C-based iWUE models. Here, we 1) present the theoretical basis of 13C-based iWUE models: the classical model (iWUEsim), the comprehensive model (iWUEcom), and the model incorporating mesophyll conductance (iWUEmes); 2) discuss the limitations of the widely used iWUEsim model; 3) and make suggestions on the application of the iWUEmes model. Finally, we suggest that a mechanistic understanding of mesophyll conductance associated effects and post-photosynthetic fractionation are the bottlenecks for improving the 13C-based estimation of iWUE.

Keywords: 13c based; use efficiency; water use; iwue; model; intrinsic water

Journal Title: Frontiers in Plant Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.