Water supply and demand in leaves are primarily determined by stomatal density (SD, water demand) and minor leaf vein density (VLA, water supply). Thus, covariation between them is essential for… Click to show full abstract
Water supply and demand in leaves are primarily determined by stomatal density (SD, water demand) and minor leaf vein density (VLA, water supply). Thus, covariation between them is essential for maintaining water balance. However, there is debate over whether these two traits vary in a coordinated way. Here, we gathered SD and VLA data from 194 species over four altitudinal gradients, and investigated their relationships across all species, growth forms, and different altitudes. Our findings demonstrated that SD and VLA were positively associated across all species, independent on plant phylogeny. Moreover, the reliability of this SD-VLA relationship increased with altitudes. Although the stomatal number per minor vein length (SV) remained stable across different altitudes and growth forms, the positive SD-VLA relationship was found only in shrubs and herbs, but not in trees. Differently, a strong coordination between total stomatal number and total leaf vein length was observed across all species, trees, shrubs and herbs. These findings suggested that coordinating stomatal number and minor vein length within one leaf, rather than stomatal and vein density, may be a common choice of plants in the fluctuating environment. Therefore, to explore the relationship between total number of stomata and total length of leaf veins seems to better reflect the linkage between stomata and leaf veins, especially when covering different growth forms.
               
Click one of the above tabs to view related content.