LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight-Convolutional Neural Network for Apple Leaf Disease Identification

Photo by renran from unsplash

As a widely consumed fruit worldwide, it is extremely important to prevent and control disease in apple trees. In this research, we designed convolutional neural networks (CNNs) for five diseases… Click to show full abstract

As a widely consumed fruit worldwide, it is extremely important to prevent and control disease in apple trees. In this research, we designed convolutional neural networks (CNNs) for five diseases that affect apple tree leaves based on the AlexNet model. First, the coarse-grained features of the disease are extracted in the model using dilated convolution, which helps to maintain a large receptive field while reducing the number of parameters. The parallel convolution module is added to extract leaf disease features at multiple scales. Subsequently, the series 3 × 3 convolutions shortcut connection allows the model to deal with additional nonlinearities. Further, the attention mechanism is added to all aggregated output modules to better fit channel features and reduce the impact of a complex background on the model performance. Finally, the two fully connected layers are replaced by global pooling to reduce the number of model parameters, to ensure that the features are not lost. The final recognition accuracy of the model is 97.36%, and the size of the model is 5.87 MB. In comparison with five other models, our model design is reasonable and has good robustness; further, the results show that the proposed model is lightweight and can identify apple leaf diseases with high accuracy.

Keywords: convolutional neural; apple; apple leaf; model; leaf disease

Journal Title: Frontiers in Plant Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.