LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility

Photo from wikipedia

Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins… Click to show full abstract

Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins active during many developmental and physiological processes, but they can also be produced by bacteria and fungi during interaction with plant hosts. Cell wall alteration brought about by ectopic expression, overexpression, or exogenous addition of expansins from either eukaryote or prokaryote origin can in some instances provide resistance to pathogens, while in other cases plants become more susceptible to infection. In these circumstances altered cell wall mechanical properties might be directly responsible for pathogen resistance or susceptibility outcomes. Simultaneously, through membrane receptors for enzymatically released cell wall fragments or by sensing modified cell wall barrier properties, plants trigger intracellular signaling cascades inducing defense responses and reinforcement of the cell wall, contributing to various infection phenotypes, in which expansins might also be involved. Here, we review the plant immune response activated by cell wall surveillance mechanisms, cell wall fragments identified as responsible for immune responses, and expansin’s roles in resistance and susceptibility of plants to pathogen attack.

Keywords: resistance susceptibility; cell; cell wall; plant

Journal Title: Frontiers in Plant Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.