LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-time guava tree-part segmentation using fully convolutional network with channel and spatial attention

Photo by emben from unsplash

It is imminent to develop intelligent harvesting robots to alleviate the burden of rising costs of manual picking. A key problem in robotic harvesting is how to recognize tree parts… Click to show full abstract

It is imminent to develop intelligent harvesting robots to alleviate the burden of rising costs of manual picking. A key problem in robotic harvesting is how to recognize tree parts efficiently without losing accuracy, thus helping the robots plan collision-free paths. This study introduces a real-time tree-part segmentation network by improving fully convolutional network with channel and spatial attention. A lightweight backbone is first deployed to extract low-level and high-level features. These features may contain redundant information in their channel and spatial dimensions, so a channel and spatial attention module is proposed to enhance informative channels and spatial locations. On this basis, a feature aggregation module is investigated to fuse the low-level details and high-level semantics to improve segmentation accuracy. A tree-part dataset with 891 RGB images is collected, and each image is manually annotated in a per-pixel fashion. Experiment results show that when using MobileNetV3-Large as the backbone, the proposed network obtained an intersection-over-union (IoU) value of 63.33 and 66.25% for the branches and fruits, respectively, and required only 2.36 billion floating point operations per second (FLOPs); when using MobileNetV3-Small as the backbone, the network achieved an IoU value of 60.62 and 61.05% for the branches and fruits, respectively, at a speed of 1.18 billion FLOPs. Such results demonstrate that the proposed network can segment the tree-parts efficiently without loss of accuracy, and thus can be applied to the harvesting robots to plan collision-free paths.

Keywords: network; channel spatial; tree part; spatial attention; segmentation

Journal Title: Frontiers in Plant Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.