LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimating the rice nitrogen nutrition index based on hyperspectral transform technology

Photo by kate5oh3 from unsplash

Background and objective The rapid diagnosis of rice nitrogen nutrition is of great significance to rice field management and precision fertilization. The nitrogen nutrition index (NNI) based on the standard… Click to show full abstract

Background and objective The rapid diagnosis of rice nitrogen nutrition is of great significance to rice field management and precision fertilization. The nitrogen nutrition index (NNI) based on the standard nitrogen concentration curve is a common parameter for the quantitative diagnosis of rice nitrogen nutrition. However, the current NNI estimation methods based on hyperspectral techniques mainly focus on finding a better estimation model while ignoring the relationship between the critical nitrogen concentration curve and rice hyperspectral reflectance. Methods This study obtained canopy spectral data using unmanned aerial vehicle (UAV) hyperspectral remote sensing and determined the rice critical nitrogen concentration curve and NNI. Taking the spectrum at critical nitrogen concentration as the standard spectrum, the original spectral reflectance and logarithmic spectral reflectance data were transformed by the difference method, and the features of the spectral data were extracted by a Autoencoder. Finally, the NNI inversion models of rice based on Extreme Learning Machine (ELM) and Bald Eagle Search-Extreme Learning Machine (BES-ELM) were constructed by taking the feature bands of four spectral extractions as input variables. Results 1) from the feature extraction results of the self-encoder, simple logarithmic or difference transformation had little effect on NNI estimation, and logarithmic difference transformation effectively improved the NNI estimation results; 2) the estimation model based on the logarithmic difference spectrum and BES-ELM had the highest estimation accuracy, and the coefficient of determination (R2) values of the training set and verification set were 0.839 and 0.837, and the root mean square error (RMSE) values were 0.075 and 0.073, respectively; 3) according to the NNI, the samples were divided into a nitrogen-rich group (NNI ≥ 1) and nitrogen-deficient group (NNI < 1). Conclusion The logarithmic difference transformation of the spectrum can effectively improve the estimation accuracy of the NNI estimation model, providing a new approach for improving NNI estimation methods based on hyperspectral technology.

Keywords: nitrogen nutrition; rice nitrogen; rice; estimation; nitrogen

Journal Title: Frontiers in Plant Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.