LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterizing Listener Engagement with Popular Songs Using Large-Scale Music Discovery Data

Photo from wikipedia

Music discovery in everyday situations has been facilitated in recent years by audio content recognition services such as Shazam. The widespread use of such services has produced a wealth of… Click to show full abstract

Music discovery in everyday situations has been facilitated in recent years by audio content recognition services such as Shazam. The widespread use of such services has produced a wealth of user data, specifying where and when a global audience takes action to learn more about music playing around them. Here, we analyze a large collection of Shazam queries of popular songs to study the relationship between the timing of queries and corresponding musical content. Our results reveal that the distribution of queries varies over the course of a song, and that salient musical events drive an increase in queries during a song. Furthermore, we find that the distribution of queries at the time of a song's release differs from the distribution following a song's peak and subsequent decline in popularity, possibly reflecting an evolution of user intent over the “life cycle” of a song. Finally, we derive insights into the data size needed to achieve consistent query distributions for individual songs. The combined findings of this study suggest that music discovery behavior, and other facets of the human experience of music, can be studied quantitatively using large-scale industrial data.

Keywords: large scale; using large; music discovery; popular songs; music

Journal Title: Frontiers in Psychology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.