LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recognizing Personality Traits Using Consumer Behavior Patterns in a Virtual Retail Store

Photo from wikipedia

Virtual reality (VR) is a useful tool to study consumer behavior while they are immersed in a realistic scenario. Among several other factors, personality traits have been shown to have… Click to show full abstract

Virtual reality (VR) is a useful tool to study consumer behavior while they are immersed in a realistic scenario. Among several other factors, personality traits have been shown to have a substantial influence on purchasing behavior. The primary objective of this study was to classify consumers based on the Big Five personality domains using their behavior while performing different tasks in a virtual shop. The personality recognition was ascertained using behavioral measures received from VR hardware, including eye-tracking, navigation, posture and interaction. Responses from 60 participants were collected while performing free and directed search tasks in a virtual hypermarket. A set of behavioral features was processed, and the personality domains were recognized using a statistical supervised machine learning classifier algorithm via a support vector machine. The results suggest that the open-mindedness personality type can be classified using eye gaze patterns, while extraversion is related to posture and interactions. However, a combination of signals must be exhibited to detect conscientiousness and negative emotionality. The combination of all measures and tasks provides better classification accuracy for all personality domains. The study indicates that a consumer’s personality can be recognized using the behavioral sensors included in commercial VR devices during a purchase in a virtual retail store.

Keywords: consumer behavior; virtual retail; personality; personality traits; retail store; consumer

Journal Title: Frontiers in Psychology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.