LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Personality Trait Recognition: A Survey

Photo from wikipedia

Automatic personality trait recognition has attracted increasing interest in psychology, neuropsychology, and computer science, etc. Motivated by the great success of deep learning methods in various tasks, a variety of… Click to show full abstract

Automatic personality trait recognition has attracted increasing interest in psychology, neuropsychology, and computer science, etc. Motivated by the great success of deep learning methods in various tasks, a variety of deep neural networks have increasingly been employed to learn high-level feature representations for automatic personality trait recognition. This paper systematically presents a comprehensive survey on existing personality trait recognition methods from a computational perspective. Initially, we provide available personality trait data sets in the literature. Then, we review the principles and recent advances of typical deep learning techniques, including deep belief networks (DBNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs). Next, we describe the details of state-of-the-art personality trait recognition methods with specific focus on hand-crafted and deep learning-based feature extraction. These methods are analyzed and summarized in both single modality and multiple modalities, such as audio, visual, text, and physiological signals. Finally, we analyze the challenges and opportunities in this field and point out its future directions.

Keywords: personality; trait recognition; psychology; personality trait

Journal Title: Frontiers in Psychology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.