LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cross-modal association analysis and matching model construction of perceptual attributes of multiple colors and combined tones

Photo by kellysikkema from unsplash

Audio-visual correlation is a common phenomenon in real life. In this article, aiming at analyzing the correlation between multiple colors and combined tones, we comprehensively used experimental methods and technologies… Click to show full abstract

Audio-visual correlation is a common phenomenon in real life. In this article, aiming at analyzing the correlation between multiple colors and combined tones, we comprehensively used experimental methods and technologies such as experimental psychology methods, audio-visual information processing technology, and machine learning algorithms to study the correlation mechanism between the multi-color perceptual attributes and the interval consonance attribute of musical sounds, so as to construct an audio-visual cross-modal matching models. Specifically, in the first, this article constructed the multi-color perceptual attribute dataset through the subjective evaluation experiment, namely “cold/warm,” “soft/hard,” “transparent/turbid,” “far/near,” “weak/strong,” pleasure, arousal, and dominance; and constructed the interval consonance attribute dataset based on calculating the audio objective parameters. Secondly, a subjective evaluation experiment of cross-modal matching was designed and carried out for analyzing the audio-visual correlation, so as to obtain the cross-modal matched and mismatched data between the audio-visual perceptual attributes. On this basis, through visual processing and correlation analysis of the matched and mismatched data, this article proved that there is a certain correlation between multicolor and combined tones from the perspective of perceptual attributes. Finally, this article used linear and non-linear machine learning algorithms to construct audio-visual cross-modal matching models, so as to realize the mutual prediction between the audio-visual perceptual attributes, and the highest prediction accuracy is up to 79.1%. The contributions of our research are: (1) The cross-modal matched and mismatched dataset can provide basic data support for audio-visual cross-modal research; (2) The constructed audio-visual cross-modal matching models can provide a theoretical basis for audio-visual interaction technology; (3) In addition, the research method of audio-visual cross-modal matching proposed in this article can provide new research ideas for related research.

Keywords: correlation; perceptual attributes; audio visual; cross modal

Journal Title: Frontiers in Psychology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.