Genetic polymorphisms may contribute to individual susceptibility to DNA damage induced by environmental exposure. In this study, we evaluate the effects of co-exposure to PAHs, smoking and XPC polymorphisms, alone… Click to show full abstract
Genetic polymorphisms may contribute to individual susceptibility to DNA damage induced by environmental exposure. In this study, we evaluate the effects of co-exposure to PAHs, smoking and XPC polymorphisms, alone or combined, on damage in exons. A total of 288 healthy male coke oven workers were enrolled into this study, and urinary 1-hydroxypyrene (1-OH-Pyr) was detected. Base modification in exons of KRAS and BRAF gene, and polymorphisms of XPC were determined in plasma by real-time PCR. We observed 1-OH-Pyr was positively related to damage in exon 2 of KRAS (KRAS-2) and in exon 15 of BRAF (BRAF-15), respectively, and KRAS-2 and BRAF-15 were significantly associated with increased 1-OH-Pyr. A stratified analysis found 1-OH-Pyr was significantly associated with KRAS-2 in both smokers and non-smokers, while 1-OH-Pyr was significantly associated with BRAF-15 only in smokers. Additionally, individuals carrying both rs2228001 G-allele (GG+GT) and rs3731055 GG homozygote (GG) genotype appeared to have more significant effect on KRAS-2. The high levels of 1-OH-Pyr were associated with KRAS-2 only in rs2228001 GG+GT genotype carriers and the high levels of 1-OH-Pyr were associated with KRAS-2 only in rs3731055 GG genotype carriers and the most severe KRAS-2 was observed among subjects carrying all four of the above risk factors. Our findings indicated the co-exposure effect of PAHs and smoking could increase the risk of KRAS-2 by a mechanism partly involving XPC polymorphisms.
               
Click one of the above tabs to view related content.