LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast and Automated Oscillation Frequency Extraction Using Bayesian Multi-Modality

Photo from academic.microsoft.com

Since the advent of CoRoT, and NASA Kepler and K2, the number of low- and intermediate-mass stars classified as pulsators has increased very rapidly with time, now accounting for several… Click to show full abstract

Since the advent of CoRoT, and NASA Kepler and K2, the number of low- and intermediate-mass stars classified as pulsators has increased very rapidly with time, now accounting for several $10^4$ targets. With the recent launch of NASA TESS space mission, we have confirmed our entrance to the era of all-sky observations of oscillating stars. TESS is currently releasing good quality datasets that already allow for the characterization and identification of individual oscillation modes even from single 27-days shots on some stars. When ESA PLATO will become operative by the next decade, we will face the observation of several more hundred thousands stars where identifying individual oscillation modes will be possible. However, estimating the individual frequency, amplitude, and lifetime of the oscillation modes is not an easy task. This is because solar-like oscillations and especially their evolved version, the red giant branch (RGB) oscillations, can vary significantly from one star to another depending on its specific stage of the evolution, mass, effective temperature, metallicity, as well as on its level of rotation and magnetism. In this perspective I will present a novel, fast, and powerful way to derive individual oscillation mode frequencies by building on previous results obtained with \diamonds. I will show that the oscillation frequencies obtained with this new approach can reach precisions of about 0.1 % and accuracies of about 0.01 % when compared to published literature values for the RGB star KIC~12008916.

Keywords: automated oscillation; oscillation modes; frequency; oscillation; individual oscillation; fast automated

Journal Title: Frontiers in Astronomy and Space Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.