LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and validation of main spectral profile for rapid identification of Yersinia ruckeri isolated from Atlantic salmon using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Photo by judy_beth_morris_idaho from unsplash

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms. The accuracy of bacterial identification using MALDI-TOF MS depends on main spectral profiles (MSPs) provided… Click to show full abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms. The accuracy of bacterial identification using MALDI-TOF MS depends on main spectral profiles (MSPs) provided in a quality-assured commercial reference library, which requires ongoing improvement. This study aimed to develop and validate an in-house MALDI-TOF MS MSP to rapidly identify Yersinia ruckeri isolated from Atlantic salmon (Salmo salar). The novel MSP was prepared using an isolate of Y. ruckeri recovered from Atlantic salmon and confirmed by 16S rRNA gene sequencing. Subsequently, a validation set which comprises 29 isolates of Y. ruckeri were examined from three fishes: Atlantic salmon (Salmo salar) (n = 26), American eel (Anguilla rostrata) (n = 1), and Atlantic cod (Gadus morhua) (n = 2). These isolates were randomly selected from the Atlantic Veterinary College, Aquatic Diagnostic Services Bacteriology Laboratory's culture collection to validate the novel MSP. Analytical sensitivity of MALDI-TOF MS using the novel MSP to identify the validation set was 86.2%. Repeatability was assessed by acquiring spectra from 30 different spots of a randomly-selected isolate of Y. ruckeri, and analyzed spectra from each spot were compared against the novel MSP. The coefficient of variation was 3.3%. The novel MSP clustered with Bruker MSPs (n = 3) of Y. ruckeri in the reference library and did not falsely identify any closely related bacteria to Y. ruckeri. This study reports the development of a novel MSP of high analytical sensitivity and specificity for rapid identification of Y. ruckeri using MALDI-TOF MS.

Keywords: atlantic salmon; identification; maldi tof; novel msp; ruckeri

Journal Title: Frontiers in Veterinary Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.