LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Robust Visual Tracking Algorithm Based on Spatial-Temporal Context Hierarchical Response Fusion

Photo from wikipedia

Discriminative correlation filters (DCFs) have been shown to perform superiorly in visual object tracking. However, visual tracking is still challenging when the target objects undergo complex scenarios such as occlusion,… Click to show full abstract

Discriminative correlation filters (DCFs) have been shown to perform superiorly in visual object tracking. However, visual tracking is still challenging when the target objects undergo complex scenarios such as occlusion, deformation, scale changes and illumination changes. In this paper, we utilize the hierarchical features of convolutional neural networks (CNNs) and learn a spatial-temporal context correlation filter on convolutional layers. Then, the translation is estimated by fusing the response score of the filters on the three convolutional layers. In terms of scale estimation, we learn a discriminative correlation filter to estimate scale from the best confidence results. Furthermore, we proposed a re-detection activation discrimination method to improve the robustness of visual tracking in the case of tracking failure and an adaptive model update method to reduce tracking drift caused by noisy updates. We evaluate the proposed tracker with DCFs and deep features on OTB benchmark datasets. The tracking results demonstrated that the proposed algorithm is superior to several state-of-the-art DCF methods in terms of accuracy and robustness.

Keywords: algorithm; response; visual tracking; temporal context; spatial temporal

Journal Title: Algorithms
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.