LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SR-Inpaint: A General Deep Learning Framework for High Resolution Image Inpainting

Photo from wikipedia

Recently, deep learning has enabled a huge leap forward in image inpainting. However, due to the memory and computational limitation, most existing methods are able to handle only low-resolution inputs,… Click to show full abstract

Recently, deep learning has enabled a huge leap forward in image inpainting. However, due to the memory and computational limitation, most existing methods are able to handle only low-resolution inputs, typically less than 1 K. With the improvement of Internet transmission capacity and mobile device cameras, the resolution of image and video sources available to users via the cloud or locally is increasing. For high-resolution images, the common inpainting methods simply upsample the inpainted result of the shrinked image to yield a blurry result. In recent years, there is an urgent need to reconstruct the missing high-frequency information in high-resolution images and generate sharp texture details. Hence, we propose a general deep learning framework for high-resolution image inpainting, which first hallucinates a semantically continuous blurred result using low-resolution inpainting and suppresses computational overhead. Then the sharp high-frequency details with original resolution are reconstructed using super-resolution refinement. Experimentally, our method achieves inspiring inpainting quality on 2K and 4K resolution images, ahead of the state-of-the-art high-resolution inpainting technique. This framework is expected to be popularized for high-resolution image editing tasks on personal computers and mobile devices in the future.

Keywords: resolution; high resolution; resolution image; image inpainting; deep learning

Journal Title: Algorithms
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.