Automatic grouping (clustering) involves dividing a set of objects into subsets (groups) so that the objects from one subset are more similar to each other than to the objects from… Click to show full abstract
Automatic grouping (clustering) involves dividing a set of objects into subsets (groups) so that the objects from one subset are more similar to each other than to the objects from other subsets according to some criterion. Kohonen neural networks are a class of artificial neural networks, the main element of which is a layer of adaptive linear adders, operating on the principle of “winner takes all”. One of the advantages of Kohonen networks is their ability of online clustering. Greedy agglomerative procedures in clustering consistently improve the result in some neighborhood of a known solution, choosing as the next solution the option that provides the least increase in the objective function. Algorithms using the agglomerative greedy heuristics demonstrate precise and stable results for a k-means model. In our study, we propose a greedy agglomerative heuristic algorithm based on a Kohonen neural network with distance measure variations to cluster industrial products. Computational experiments demonstrate the comparative efficiency and accuracy of using the greedy agglomerative heuristic in the problem of grouping of industrial products into homogeneous production batches.
               
Click one of the above tabs to view related content.