LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast Conflict Detection for Multi-Dimensional Packet Filters

Photo from wikipedia

To support advanced network services, Internet routers must perform packet classification based on a set of rules called packet filters. If two or more filters overlap, a filter conflict will… Click to show full abstract

To support advanced network services, Internet routers must perform packet classification based on a set of rules called packet filters. If two or more filters overlap, a filter conflict will occur and lead to ambiguity in packet classification. Further, it may affect network security or even the correctness of packet routing. Hence, it is necessary to detect conflicts to avoid the above problems. In recent years, many conflict detection algorithms have been proposed, but most of them detect conflicts for only prefix fields (i.e., source/destination IP address fields) of filters. For greater practicality, conflict detection must include non-prefix fields such as source/destination IP port fields and the protocol field. In this study, we propose an efficient conflict detection algorithm for five-dimensional filters, which include both prefix and non-prefix fields. In the proposed algorithm, a tiny lookup table is created for quickly filtering out a large portion of non-conflicting filter pairs, thereby reducing the overall conflict detection time. Experimental results show that our algorithm reduces the detection time by 10% to 28% compared with other conflict detection algorithms for 20 K filter databases. More importantly, our algorithm can be used to extend any existing conflict detection algorithms for two-dimensional filters to support fast conflict detection for five-dimensional filters.

Keywords: conflict detection; fast conflict; packet filters; detection

Journal Title: Algorithms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.