LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DrugFinder: Druggable Protein Identification Model Based on Pre-Trained Models and Evolutionary Information

Photo by thinkmagically from unsplash

The identification of druggable proteins has always been the core of drug development. Traditional structure-based identification methods are time-consuming and costly. As a result, more and more researchers have shifted… Click to show full abstract

The identification of druggable proteins has always been the core of drug development. Traditional structure-based identification methods are time-consuming and costly. As a result, more and more researchers have shifted their attention to sequence-based methods for identifying druggable proteins. We propose a sequence-based druggable protein identification model called DrugFinder. The model extracts the features from the embedding output of the pre-trained protein model Prot_T5_Xl_Uniref50 (T5) and the evolutionary information of the position-specific scoring matrix (PSSM). Afterwards, to remove redundant features and improve model performance, we used the random forest (RF) method to select features, and the selected features were trained and tested on multiple different machine learning classifiers, including support vector machines (SVM), RF, naive Bayes (NB), extreme gradient boosting (XGB), and k-nearest neighbors (KNN). Among these classifiers, the XGB model achieved the best results. DrugFinder reached an accuracy of 94.98%, sensitivity of 96.33% and specificity of 96.83% on the independent test set, which is much better than the results from existing identification methods. Our model also performed well on another additional test set related to tumors, achieving an accuracy of 88.71% and precision of 93.72%. This further demonstrates the strong generalization capability of the model.

Keywords: identification; model; druggable protein; pre trained; protein identification; identification model

Journal Title: Algorithms
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.