The present work focuses on the actuation system of a morphing winglet conceived to adaptively alter the load distribution on the wing, to reduce its stress level and enhance the… Click to show full abstract
The present work focuses on the actuation system of a morphing winglet conceived to adaptively alter the load distribution on the wing, to reduce its stress level and enhance the climb performance. The winglet is equipped with two flaps, independently controlled by dedicated kinematic chains, in turn moved by linear electro-magnetic actuators. An interior finger-like architecture, relevant part of the actuation system, makes particularly smooth the deflections. Starting from a survey on similar applications and on the basis of the requirements at aircraft level, the specifications of the actuation system were defined. A preliminary outline of the system was thus addressed, identifying the main components, their role and their working mode. Then, the advanced design was finalized. To this scope and considering the large displacements that characterize this kind of application, a non-linear finite element approach was implemented. Both the deflection capability with and without loads and the stress level of the system were investigated. A critical overview was finally organized, comparing the achieved results with the expectations.
               
Click one of the above tabs to view related content.