LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Assessment of Fractional-Order PDD1/2 Control of a Brushless DC Motor with Inertial Load

Photo by charlesdeluvio from unsplash

The application of Fractional Calculus to control mechatronic devices is a promising research area. The most common approach to Fractional-Order (FO) control design is the PIλDµ scheme, which adopts integrals… Click to show full abstract

The application of Fractional Calculus to control mechatronic devices is a promising research area. The most common approach to Fractional-Order (FO) control design is the PIλDµ scheme, which adopts integrals and derivatives of non-integer order λ and µ. A different possible approach is to add FO terms to the PID control, instead of replacing integer order terms; for example, in the PDD1/2 scheme, the half-derivative term is added to the classical PD. In the present paper, by mainly focusing on the transitory behaviour, a comparison among PD, PDµ, and PDD1/2 control schemes is carried out, with reference to a real-world mechatronic implementation: a position-controlled rotor actuated by a DC brushless motor. While using a general non-dimensional approach, the three control schemes are first compared by continuous-time simulations, and tuning criteria are outlined. Afterwards, the effects of the discrete-time digital implementation of the controllers are investigated by both simulation and experimental tests. The results show how PDD1/2 is an effective and almost cost-free solution for improving the trajectory-tracking performance in position control of mechatronic devices, with limited computational burden and, consequently, easily implementable on most commercial motion control drives.

Keywords: pdd1 control; order; control; fractional order; brushless motor

Journal Title: Actuators
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.