LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compound Fault Diagnosis and Sequential Prognosis for Electric Scooter with Uncertainties

Photo from wikipedia

This paper addresses diagnosis and prognosis problems for an electric scooter subjected to parameter uncertainties and compound faults (i.e., permanent fault and intermittent fault with non-monotonic degradation). First, the diagnostic… Click to show full abstract

This paper addresses diagnosis and prognosis problems for an electric scooter subjected to parameter uncertainties and compound faults (i.e., permanent fault and intermittent fault with non-monotonic degradation). First, the diagnostic bond graph in linear fractional transformation form is used to model the uncertain electric scooter and derive the analytical redundancy relations incorporating the nominal part and uncertain part, based on which the adaptive thresholds for robust fault detection and the fault signature matrix for fault isolation can be obtained. Second, an adaptive enhanced unscented Kalman filter is proposed to identify the fault magnitudes and distinguish the fault types where an auxiliary detector is introduced to capture the appearing and disappearing moments of intermittent fault. Third, a dynamic model with usage dependent degradation coefficient is developed to describe the degradation process of intermittent fault under various usage conditions. Due to the variation of degradation coefficient and the presence of non-monotonic degradation characteristic under some usage conditions, a sequential prognosis method is proposed where the reactivation of the prognoser is governed by the reactivation events. Finally, the proposed methods are validated by experiment results.

Keywords: electric scooter; degradation; fault; sequential prognosis

Journal Title: Actuators
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.