LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transfer Learning-Based Search Model for Hot Pepper Diseases and Pests

Photo from wikipedia

The use of conventional classification techniques to recognize diseases and pests can lead to an incorrect judgment on whether crops are diseased or not. Additionally, hot pepper diseases, such as… Click to show full abstract

The use of conventional classification techniques to recognize diseases and pests can lead to an incorrect judgment on whether crops are diseased or not. Additionally, hot pepper diseases, such as “anthracnose” and “bacterial spot” can be erroneously judged, leading to incorrect disease recognition. To address these issues, multi-recognition methods, such as Google Cloud Vision, suggest multiple disease candidates and allow the user to make the final decision. Similarity-based image search techniques, along with multi-recognition, can also be used for this purpose. Content-based image retrieval techniques have been used in several conventional similarity-based image searches, using descriptors to extract features such as the image color and edge. In this study, we use eight pre-trained deep learning models (VGG16, VGG19, Resnet 50, etc.) to extract the deep features from images. We conducted experiments using 28,011 image data of 34 types of hot pepper diseases and pests. The search results for diseases and pests were similar to query images with deep features using the k-nearest neighbor method. In top-1 to top-5, when using the deep features based on the Resnet 50 model, we achieved recognition accuracies of approximately 88.38–93.88% for diseases and approximately 95.38–98.42% for pests. When using the deep features extracted from the VGG16 and VGG19 models, we recorded the second and third highest performances, respectively. In the top-10 results, when using the deep features extracted from the Resnet 50 model, we achieved accuracies of 85.6 and 93.62% for diseases and pests, respectively. As a result of performance comparison between the proposed method and the simple convolutional neural network (CNN) model, the proposed method recorded 8.62% higher accuracy in diseases and 14.86% higher in pests than the CNN classification model.

Keywords: diseases pests; hot pepper; model; deep features; pepper diseases

Journal Title: Agriculture
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.