LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beyond Trade-Off: An Optimized Binocular Stereo Vision Based Depth Estimation Algorithm for Designing Harvesting Robot in Orchards

Photo from wikipedia

Depth estimation is one of the bottleneck parts for harvesting robots to determine whether the operation of grasping or picking succeeds or not directly. This paper proposed a novel disparity… Click to show full abstract

Depth estimation is one of the bottleneck parts for harvesting robots to determine whether the operation of grasping or picking succeeds or not directly. This paper proposed a novel disparity completion method combined with bilateral filtering and pyramid fusion to improve the issues of incorrect outputs due to the missed or wrong matching when achieving 3D position from 2D images in open-world environments. Briefly, our proposed method has two significant advantages in general. Firstly, occlusion between leaves, branches, and fruits is a universal phenomenon in unstructured orchard environments, which results in the most depth estimation algorithms facing great challenges to obtain accurate outputs in these occluded regions. To alleviate these issues, unlike other research efforts that already exist, we optimized the semi-global matching algorithm to obtain high accuracy sparse values as an initial disparity map; then, an improved bilateral filtering algorithm is proposed to eliminate holes and discontinuous regions caused by occlusion to obtain precise and density disparity outputs. Secondly, due to taking the practical high-efficiency requirements of the automated harvesting robot in its working status into consideration, we attempted to merge multiple low-resolution bilateral filtering results through the pyramid fusion model which goes beyond the trade-off mechanism to improve the performance of both accuracy and time cost. Finally, a prototype harvesting robot was designed to conduct experiments at three kinds of different distances (0.6~0.75 m, 1~1.2 m, and 1.6~1.9 m). Experiment results showed that our proposed method achieved density disparity maps and eliminated holes and discontinuous defects in the disparity map effectively. The average absolute error of our proposed method is 3.2 mm, and the average relative error is 1.79%. In addition, the time cost is greatly reduced more than 90%. Comprehensive experimental results demonstrate that our proposed algorithm provides a potential possibility for designing harvesting.

Keywords: harvesting robot; beyond trade; disparity; depth estimation

Journal Title: Agriculture
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.