Winter frost injury is a major limiting factor for olive cultivation in temperate regions. The response of olive shoots to freezing stress can be used for selecting genotypes resistant to… Click to show full abstract
Winter frost injury is a major limiting factor for olive cultivation in temperate regions. The response of olive shoots to freezing stress can be used for selecting genotypes resistant to freezing. The electrolyte leakage (EL) and tetrazolium tests (TZ) are commonly used to evaluate dead tissues in cold stress studies. The temperature–response curve of dead tissues to lethal temperature (LT) is measured with models to calculate LT50 and LT90. In this study, we evaluated the accuracy and efficiency of eighteen nonlinear regression models (NLRs) in calculating LT50 and LT90 of freezing stress in different olive cultivars at various stages of dormancy. After evaluating the prediction performance of NLR models, it was found that only eight models were suitable for the purpose of this research out of the eighteen models examined. The 2p-logistic and Gompertz models were selected for modeling EL and TZ, respectively. Our research findings indicate that the Roughani, Kawi, and Zard varieties of olive trees exhibit the best performance under artificial temperature-controlled conditions. Our findings provide valuable insights into selecting frost-resistant cultivars and designing effective strategies for cold acclimation in olive cultivation.
               
Click one of the above tabs to view related content.