LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Phenotyping of Yield-Related Traits in Wheat

Photo from wikipedia

The complex formation of grain yield (GY) is related to multiple dry matter (DM) traits; however, due to their time-consuming determination, they are not readily accessible. In winter wheat (Triticum… Click to show full abstract

The complex formation of grain yield (GY) is related to multiple dry matter (DM) traits; however, due to their time-consuming determination, they are not readily accessible. In winter wheat (Triticum aestivum L.), both agronomic treatments and genotypic variation influence GY in interaction with the environment. Spectral proximal sensing is promising for high-throughput non-destructive phenotyping but was rarely evaluated systematically for dissecting yield-related variation in DM traits. Aiming at a temporal, spectral and organ-level optimization, 48 vegetation indices were evaluated in a high-yielding environment in 10 growth stages for the estimation of 31 previously compared traits related to GY formation—influenced by sowing time, fungicide, N fertilization, and cultivar. A quantitative index ranking was evaluated to assess the stage-independent index suitability. GY showed close linear relationships with spectral vegetation indices across and within agronomic treatments (R2 = 0.47–0.67 ***). Water band indices, followed by red edge-based indices, best used at milk or early dough ripeness, were better suited than the widely used normalized difference vegetation index (NDVI). Index rankings for many organ-level DM traits were comparable, but the relationships were often less close. Among yield components, grain number per spike (R2 = 0.24–0.34 ***) and spike density (R2 = 0.23–0.46 ***) were moderately estimated. GY was mainly estimated by detecting total DM rather than the harvest index. Across agronomic treatments and cultivars, seasonal index rankings were the most stable for GY and total DM, whereas traits related to DM allocation and translocation demanded specific index selection. The results suggest using indices with water bands, near infrared/red edge and visible light bands to increase the accuracy of in-season spectral phenotyping for GY, contributing organ-level traits, and yield components, respectively.

Keywords: index; organ level; deep phenotyping; agronomic treatments; yield related

Journal Title: Agronomy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.